ЭКОЛОГИЧЕСКИ БЕЗОПАСНЫЙ РЕЖИМ ОРОШЕНИЯ ЛЮЦЕРНЫ ПРИ ПОЛИВЕ СТОЧНЫМИ ВОДАМИ

Э.Б. Серикбаева

ТИМИ, к.т.н., доц.

По данным многолетных исследований, экологически безопасных размеров режима поливов люцерны в хозяйствах Нижне-Чирчикского района Ташкентского области выяснялись возможности:

- -получения проектной экологически безопасной урожайности при определенной агротехнике:
- -требуемого регулирования водного, пищевого и солевого режимов почв, исключающие вертикальные и поверхностные сбросы
- -повышения плодородия почв за счет правильного водного и питательного режима при использовании сточных подземных и дождевых вод на поливы:
- -рациональной организации труда при поливах и обработках почв.
- -улучшения экологических обстановок на орошаемых экосистемах за счет исключения эрозии почв, засоления и заболачивания.

Оросительные нормы культур определялись балансовыми расчетами по зависимости А.Н. Костякова:

$$M = E - \alpha P_c - M_3 - M_T M^3 / \Gamma a$$
 (1)

Где: Е- суммарное водопотребление;

 $\alpha \, \mathrm{P_c}$ -использование осадка;

 ${
m M_{\tiny 3}}$ -используемые влага из почвы;

 $M_{\scriptscriptstyle T}$ -используемые грунтовые воды за вегетацию;

Распределение оросительной нормы по фазам развития растений определялось по запасом влаги в почве (влажность почвы до и после поливов). При разных уровнях пред поливной влажности определялись поливные нормы и влияние режимов поливов на урожайность.

Поливные нормы определялись для активного слоя почвы, чтобы не допустить поступление оросительной воды ниже расчетного слоя и не пополнять грунтовые воды.

В первые фазы развития растений поливные нормы принимались меньшими. При поливах определялась концентрация почвенных растворов, велся контроль за солевым режимов почв.

В активном слое почвы в конце межполивных периодов влажность почвы не опускалась ниже минимально допустимой, которая определялась по зависимости:

M min = 104 H d S
$$/\lambda$$
, m³/ra (2)

Где: S – процентное содержание солей в слое H в конце межполивного периода;

 λ — допустимая концентрация почвенного раствора в процентах, в зависимости от состава солей в почве и вида растений;

По рекомендации В.М.Новикова, В.А. Никитина, и В.И. Дмитриевой годовую норму внесения животноводческих стоков для каждой культуры определяют по балансу вносимых в почву и выносимых с урожаем питательных веществ

$$\mathbf{M}_{\infty}^{y} = \frac{B^{y} - \Pi \mathbf{K}_{n}}{\mathbf{K}_{1} \cdot \mathbf{K}_{2} \cdot C} \tag{3}$$

где: M_{∞}^{y} - годовая норма внесения животноводческих стоков, м3/га; B^{y} - вынос питательных веществ из почвы с планируемым урожаем c/x культур,кг/га;

П - содержание питательных веществ в пахотном слое почвы,кг/га;

 K_n - коэффициент использования питательных веществ из почвы, в долях от единицы;

C - содержание питательных веществ в животноводческих стоках,кг/м3;

 K_1 - коэффициент использования питательных растениями из удобрений, в долях от единицы;

 K_2 - коэффициент, учитывающий потери из стоков в процессе полива (для аммиачного азота $K_2 = 0.85$,для фосфора и калия $K_2 = 1$).

При изучении химического состава сточных вод определяли следующие показатели и ингредиенты отражающие санитарно-гигенические состояния и агромелоративнию ценность сточных вод: РН: натрий Na азот общий N: азот аммиачный NH₁. азот нитратный NO₃. фосфор P_2O_5 .. Биокорбанад HCO₃ и корбанад CO₃. Сульфаты SO₄. Хлор CL. Бихроматная окисляемость XПК. Биохимические потребление кислорода БПК, взвешенный остаток органические специфические вещества колититр: кишечная палочка; яйца-гельминтов.

Полевые и лабораторные исследования показали, что 1 м³ живетока содержит питательных веществ: азота-2, и24 кг, фосфора- 1,4 кг, калия-2,17. Полевые опыты на экспериментальном участке проводились по следующей схеме:

Вариант І. Полив поверхностной водой при влажности почво-грунтов по периодом роста и развития 70-70-70% Н.В (контрольный)

Вариант II. Полив смешанной сточной водой при достижении нижнего порога влажности почво-грунтов расчетного слоя по периодам роста и развития 70-70-70% НВ. Смесь 1:7 (одна част чистой воды, 7 частей животноводческого стока).

Вариант III -полив смешанной сточной водой при достижении нижнего порога влажности по периодам роста и развития 70-70-70% HB, смесь 1:10.

Вариант IV -полив смешанной сточной водой при достижении нижнего порога влажности почвогрунтов расчетного слоя по периодам роста и развития 70-70-70 % НВ. смесь 1:15.

Суммарное водопотребления люцерны первого и второго года возделывания и прошлых лет на опытных полях определялись по формуле А.Н. Костякова:

$$\sum E = M + W + P + \Gamma; \qquad m^3 / ca \tag{4}$$

Значение удельного водопотребления люцерны определены по формуле:

$$K_{yz} = \frac{\sum E}{V}; \qquad m^3/\mu \tag{5}$$

где: K_{yz} - удельное водопотребление люцерны для получения одного центнера урожая на сено.

V – Урожайность люцерны на сено; u/гa.

Полевые экспериментальные данные суммарного и удельного водопотребления люцерны первого и второго года возделывания при поливе сточными водами приведены в таблицах 1, 2,

Таблица 1.

Значения суммарного и удельного водопотребления люцерны первого года возделыванияпри поливе экологически безопасной технологий орошения сточными водами (массив «Гулистан»), Нижне - Чирчикского района Ташкентской области.

Годы	Варианты	Оросительн ая норма м3/га	ый запас	Осадки	Грунтовые воды	Сумм. Водопо требления м3/га	Удельное водопо требления
1999	1	4600	1470	682	810	7562	92,5
	2	440	1487	682	788	7357	71,4
	3	4450	1485	682	799	7411	73,7
	4	4500	1489	682	800	7471	75,5
2000	1	4700	1456	241	767	7154	86,9
	2	4450	1458	241	739	6898	66,3
	3	4500	1460	241	744	6945	68,7

	4	4550	1459	241	750	7000	70,2
2001	1	4750	1433	63	749	6995	85,6
	2	4500	1445	63	720	6728	65,0
	3	4550	1447	63	727	6787	66,8
	4	4600	1428	63	731	6822	68,7

Таблица 2.

Значения суммарного и удельного водопотребления люцерны второго года возделывания при поливе экологически безопасной технологий орошения сточными водами (массив «Гулистан)

Годы	Варианты	ьная норма	Продукти вный запас м3/га	Осадки м3/га	Грунтовые воды	Сумм. Водопо требления м3/га	Удельное водопо требления
2000	1	6750	1850	247	1769	10616	65.1
	2	4950	1859	247	1411	8467	38
	3	5050	1856	247	1430	8583	40.1
	4	5300	1851	247	1481	8838	42.5
2001	1	6800	1834	63	1739	10436	58.3
	2	4950	1838	63	1370	8221	36
	3	5200	1829	63	1418	8510	27
	4	5350	1842	63	1450	8705	41.7
2002	1	6700	1816	1188	1941	11296	61.4
	2	4950	1820	1188	1592	9550	41.7
	3	5250	1809	1188	1649	9896	46.7
	4	5450	1821	1188	1692	10151	49.5

ЛИТЕРАТУРА

- 1. Костяков А.Н. Основы мелиорации. М.: Сельхозгиз, 1960.с -621
- 2. Никитин В.А. Крупные животноводческие комплексы и окружающая среда (гигиенические аспекты). М.: Медицина, 1980. 255с.
- 3. Серикбаев Б.С., Серикбаева Э.Б. "Эффективность орошения сельхозкультур дождевыми и подземными водами" монография Ташкент «фан» АНУз2006г.

ЭКОЛОГИЧЕСКИ БЕЗОПАСНЫЙ РЕЖИМ ОРОШЕНИЯ ЛЮЦЕРНЫЙ ПРИ ПОЛИВЕ СТОЧНЫМИ ВОДАМИ

ТИМИ, к.т.н., доц. Серикбаева Э.Б.

По данным многолетных исслдедований, экологически безопасных размеров режима поливов люцерны в хозяйствах Нижне - Чирчикского района Ташкентской области выяснялись возможности:

- -получения проектной экологически безопасной урожайности при определенной агротехнике:
- -требуемого регулирования водного, пищевого и солевого режимов почв, исключающие вертикальные и поверхностные сбросы
- -повышения плодородия почв за счет правильного водного и питательного режима при использовании сточных подземных и дождевых вод на поливы:
- -рациональной организации труда при поливах и обработках почв.
- -улучшения экологических обстановок на орошаемых экосистемах за счет исключения эрозии почв, засоления и заболачивания.

химического При изучении состава сточных вод определяли следующие показатели и ингредиенты отражающие санитарно-гигенические состояния и агромелоративнию ценность сточных вод: РН: натрий Na азот общий N: азот аммиачный NH_1 . азот нитратный NO_3 . фосфор P_2O_5 .. Биокорбанад HCO₃ и корбанад CO₃. Сульфаты SO₄. Хлор CL. Бихроматная ХПК. окисляемость Биохимические потребление кислорода взвешенный остаток органические специфические вещества колититр: кишечная палочка; яйца-гельминтов. Значение удельного водопотребления люцерны определены по формуле:

$$K_{yx} = \frac{\sum E}{y}; \qquad M^3/u$$

где: K_{yz} - удельное водопотребление люцерны для получения одного центнера урожая на сено.

У – Урожайность люцерны на сено; ц/га.